Completely bounded homomorphisms of operator algebras
نویسندگان
چکیده
منابع مشابه
Contractive and Completely Contractive Homomorphisms of Planar Algebras
We consider contractive homomorphisms of a planar algebra A(Ω) over a finitely connected bounded domain Ω ⊆ C and ask if they are necessarily completely contractive. We show that a homomorphism ρ : A(Ω) → B(H) for which dim(A(Ω)/ ker ρ) = 2 is the direct integral of homomorphisms ρT induced by operators on two dimensional Hilbert spaces via a suitable functional calculus ρT : f 7→ f(T ), f ∈ A(...
متن کاملBounded symmetric domains and generalized operator algebras
Jordan C*-algebras go back to Kaplansky, see [20]. Let J be a complex Banach Jordan algebra, that is, a complex Banach space with commutative bilinear product x◦y satisfying x◦(x2◦y) = x2◦(x◦y) as well as ||x◦y|| ≤ ||x||·||y||, Bounded symmetric domains and generalized operator algebras 51 and suppose that on J is given a (conjugate linear) isometric algebra involution x 7→ x∗. Then J is called...
متن کاملCompletely Continuous Banach Algebras
For a Banach algebra $fA$, we introduce ~$c.c(fA)$, the set of all $phiin fA^*$ such that $theta_phi:fAto fA^*$ is a completely continuous operator, where $theta_phi$ is defined by $theta_phi(a)=acdotphi$~~ for all $ain fA$. We call $fA$, a completely continuous Banach algebra if $c.c(fA)=fA^*$. We give some examples of completely continuous Banach algebras and a suffici...
متن کاملRepresentations of Multiplier Algebras in Spaces of Completely Bounded Maps
If G is a locally compact group, then the measure algebra M(G) and the completely bounded multipliers of the Fourier algebra McbA(G) can be seen to be dual objects to one another in a sense which generalises Pontryagin duality for abelian groups. We explore this duality in terms of representations of these algebras in spaces of completely bounded maps. This article is intended to give a tour of...
متن کاملRepresentations of Group Algebras in Spaces of Completely Bounded Maps
Let G be a locally compact group, π : G → U(H) be a strongly continuous unitary representation, and CB(B(H)) the space of normal completely bounded maps on B(H). We study the range of the map Γπ : M(G)→ CB(B(H)), Γπ(μ) = Z G π(s)⊗ π(s)dμ(s) where we identify CB(B(H)) with the extended Haagerup tensor product B(H)⊗ B(H). We use the fact that the C*-algebra generated by integrating π to L(G) is u...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Proceedings of the American Mathematical Society
سال: 1984
ISSN: 0002-9939
DOI: 10.1090/s0002-9939-1984-0754708-x